Index

u	Ascophyllum nodosum 95
acid-and base-catalyzed reactions 328–333	asymmetric aldol reactions 333-334
aerobic oxidations, with polyoxopalladates	asymmetric catalysis, see imidates;
16–17	Nozaki-Hiyama-Kishi reaction
AIM method 178	development
 bonded interaction nature 189–190 	asymmetric hydrogenation 153, 154, 155,
– working of 187–189	156–158, 157, 160, 161, 162, 163
alkane	atom in molecule (AIM) method 178
- hydroxylation 39	aziridination 258, 259–260, 264–265,
– oxidation 40	268-269, 272, 274
alkene 29, 153, 154, 155, 157-161	
- epoxidation 30-31, 33-34	<i>b</i>
- oxidation 32, 35, 36, 37	back donation 187
allenes 195	ball mills 327
– aminoallenes cyclization 203–205	- acid-and base-catalyzed reactions 328-333
 hydroxyallenes cyclization 196–203 	– metal-catalyzed reactions 338
– synthesis 252	CU-catalyzed reactions 343-345
- thioallenes cyclization 206	– miscellaneous 345–347
allylic sulfinylation, palladium-catalyzed	Mizoroki-Heck reaction 340-341
67, 68, 69	Sonogashira reaction 341-343
allyl sulfoxides, aromatic sulfinylation from	– – Suzuki–Miyaura reaction 338–340
72	- organocatalytic methods 333
amides 259, 265, 266, 267, 269, 270, 271	- – asymmetric aldol reactions 333–334
amino acids 131–132, see also	 – cycloaddition and related reactions
bicyclo[2.2.2]octenes	335–338
aminoallenes cyclization 203–205	basis sets 172-174
anilides cyclization 220–221	benzenesulfenic acid sulfinyl precursors
arenes	preparation and thermolysis 54
direct alkenylation of 216	bicyclo[2.2.2]octenes 131–133
direct arylation of 218–219	 DDAA derivatives and 133
direct (hetero)arylation of 215	 homogeneous hydrogenation and
arenesulfenic acid, calixarene-tethered 51	hydrogenolysis reactions with
aromatic sulfinylation 69	dehydroamino acid derivatives and 136
from allyl sulfoxides 72	 – nanometal colloids modified catalysts
 palladium-catalyzed 	136-140
– enantioselective 70	 – nanooxide colloids-modified catalysts
– halide recognition in 70	140–142
N-aryl β-enaminones cyclization 221–223	- hydrogenolysis
•	

Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C−X Bond Forming Reactions, First Edition. Edited by Pher G. Andersson.

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.

bicyclo[2.2.2]octenes (contd.)	 hydroxylation
 – heterogeneized ligand-modified 	– iron-based catalysts 38–39
nanoclusters 142–144	 – manganese-based catalysts 40–41
 layered-double hydroxides, as support for 	chelating bidentate diphosphines 108–109
Rh(TPPTS) ₃ and Rh-(<i>m</i> -TPPTC) ₃	chirality transfer 195, 197, 198, 199, 203,
homogeneous catalysts 144–147	204, 206
- ligands 133, 135–136	chiral ligands 132, 136, 154, 239, 250, 251,
BINOL 335	279, 282, see also bicyclo[2.2.2]octenes
biocatalysis, see hydrogen peroxide	- imidate, application in enantioselective
bioinspired oxidations, catalyzed by nonheme	catalysis
iron and manganese complexes 27	 – asymmetric diethylzinc addition 316
- cis-dihydroxylation	- – asymmetric iridium (I)-catalyzed
iron-based catalysts 34–37	hydrogenations 318–320
- manganese-based catalysts 37–38	- – asymmetric palladium (0)-catalyzed allylic
- desaturation	alkylations 316–318
- iron-based catalysts 41–42	copper (I)-catalyzed asymmetric
	aziridination 315–316
manganese-based catalysts 42-43	
- epoxidation	- privileged 309
iron-based catalysts 27-30	chiral monodentate phosphorus ligands, in
manganese-based catalysts 30-34	asymmetric hydrogenation 108–112
- hydroxylation	chiral oxazoline–alcohol ligands, one-step
iron-based catalysts 38-39	synthesis of 320–321
manganese-based catalysts 40-41	chiral spiro-2-alkoxy-imidazolidines synthesis
bond dissociation energy (BDE) 260	321–322
	chiral spirocyclic borate ligands application, to
<i>c</i>	catalytic enantioselective
Caldariomyces fumago 93	Nozaki-Hiyama-Kishi reaction 303-305
Candida antartica B 94, 96	chiral sulfenic acids 59
carboxylic acids 37	chloroperoxidase (CPO) 93, 94, 95, 96
catalyst precursors 112–117	chromium 279–281, 283, 284–285, 288,
catalyst–substrate adducts 107, 122, 124,	299–303, 305
126	C–N bond formation 257–258
catalytic oxidation, see bioinspired oxidations,	 copper -and silver-catalyzed 260–265
catalyzed by nonheme iron and manganese	 historical background 258–260
complexes	- rhodium-catalyzed 265-273
C–C bond-forming reactions	C–N-forming reactions 223–227
via aryl-h addition to terminal alkynes 223	C–O bond-forming reactions 227–228
via (hetero)aryl-H/Ar₂I⁺X-coupling	copper catalysis in arene and heteroarene
217-219	functionalization 211
– via (hetero)aryl-H/R-X coupling 212–216	 C–C bond-forming reactions
C=C bonds catalytic oxidation	 – via aryl-h addition to terminal alkynes
- cis-dihydroxylation	223
iron-based catalysts 34-37	 – via (hetero)aryl-H/Ar₂I⁺X-coupling
 – manganese-based catalysts 37–38 	217–219
– epoxidation	 – via (hetero)aryl-H/R-X coupling
– iron-based catalysts 27–30	212–216
 – manganese-based catalysts 30–34 	 C-halogen bond-forming reactions
C–H amination 258, 259, 260, 262, 265–274	229–230
C–H bond catalytic oxidation	- C-N-forming reactions 223-227
C-halogen bond-forming reactions	- C-O bond-forming reactions 227–228
229–230	copper catalyzed reactions 343–345
desaturation	cross-coupling reactions 338, 339, 340,
- – iron-based catalysts 41–42	341–342, 343
•	
 – manganese-based catalysts 42–43 	cycloaddition and related reactions 335–338

cycloisomerization 195–198, 196, 197, 198, 200–202, 200, 201, 202, 204, 205,	direct alkenylation of 215–216direct (hetero)arylation of 212–215, 217–218
206	
	heterogeneous catalysts 142–144
d	heteropolyacids (HPAs) 6
decalin-derived sulfenic acid synthesis and	Hf/Zr peroxopolyoxometalates 13–16
reactivity 49	homogeneous catalysis modeling 167
dehydroamino acid derivative asymmetric	– basis sets 172–174
hydrogenation 105	– density functional theory 169–170
– catalyst precursors 112–117	– electronic structure 177–178
– chiral monodentate phosphorus ligands in	AIM method 187-190
asymmetric hydrogenation 108–112	NBO method 178-187
- MAC adducts	– molecular modeling 167–168
 – evolution and enantioselection origin 	– orbitals 170–172
124–126	– reaction energies 175–177
formation 121–123	- solvation 174
– mechanistic insights 117–121	– wave function theory 168–169
density functional theory (DFT) 167,	homogeneous catalysts 144–147
169–170	homogeneous hydrogenation and
diamagnetic term 113	hydrogenolysis reactions, with
Diels-Alder reaction 335	dehydroamino acid derivatives and
dihydride mechanism 106, 107	bicyclo[2.2.2]oct-7-enes 136
dioxygen 6	 nanometal colloids-modified catalysts 136–140
e	 nanooxide colloids-modified catalysts
effective core potentials (ECPs) 174	140-142
electron correlation 168	Horner–Wadsworth–Emmons reaction 331
electron-donating phosphine 118	hydrogen peroxide 7, 77, 78, 84, 85, 86–91
enantiopure sulfenic acid 58	 biocatalytic oxidations with
enantiopure sulfinyl dienes synthesis, with	– alcohols oxidation 98–99
central and axial chirality 59	– alkenes epoxidation 96–98
epimerization 197, 198	– – enzymes and HOOH 92–94
epoxidation 90, 93	– sulfoxidation 95–96
– alkene 30–31, 33–34, 96–98	 oxidation, with vacant and hybrid POMs
– by aqueous TBHP 91	10-12
- COT 90	– oxidation with, by
- iron-based catalysts 27-30	peroxopolyoxotungstates-dendrimers
 manganese-based catalysts 30–34 	8-10
– of simple olefines 92	hydroxyallenes cyclization 196–203
f	i
free energy surface (FES) 175, 176	imidates
full configuration interaction 169	 chiral ligands application in enantioselective catalysis
g	- – asymmetric diethylzinc addition 316
α-D-glucopyranosyl sulfenic acid 55	- – asymmetric iridium (I)-catalyzed
β-D-glucopyranosyl sulfenic acid 55	hydrogenations 318–320
Gaussian type orbitals (GTO) 172	 asymmetric palladium (0)-catalyzed allylic
gold catalysis 195, 196–206	alkylations 316–318
5, 175, 170 200	copper (I)-catalyzed asymmetric
h	aziridination 315–316
Hartree–Fock (HF) method 168	- and copper (I) complex synthesis 313–315
heteroarenes	- cyclic 311–312
- dimerization 219–220	 novel synthetic applications 320–322

imidates (contd.)	MONOPHOS 111, 114, 115, 116, 120–121
– ligand synthesis 313	125
- synthesis 312-313	monophosphines 109, 115
ionic liquids (ILs) 12, 77, 80, 94, 97	MP2 method 169
 lipase-driven Baeyer-Villiger menthone 	
oxidation in hydrogen-bond-donating	n
98	nanometal colloids modified catalysts
– lipase-driven oxidation in 97	136–140
iridium, see olefins, Ir-catalyzed hydrogenation of minimally functionalized	nanooxide colloids-modified catalysts 140–142
or minimum, romenomanized	nanoparticles 136, 138, 139, 143
L	naphthalene 1,2-dioxygenase (NDO) 34, 36
k	natural bond orbital (NBO) method 177
ketones 295	- departure from Lewis structure 180–183
	- and transition metal complexes 183–187
1	- working of 178–180
layered-double hydroxides, as support for Rh(TPPTS) ₃ and Rh-(<i>m</i> -TPPTC) ₃	natural localized molecular orbital (NLMO) 182
homogeneous catalysts 144–147	natural product synthesis 280, 281, 286,
linear combination of atomic orbitals (LCAO)	303, 304
lipase-driven epoxidation of alkenes 97	nitrenes 257–261, 264–269, 271–272
lipox system 94	nitrones 85, 86
local density approximation (LDA) 170	Nozaki-Hiyama-Kishi reaction developmen
, 11	279
m	- catalytic 279–280
macrobicyclic cyclophane, sulfenic function	- applications in total synthesis 303–305
embedded in 51	enantioselective 281-282
mechanistic studies 265, 269, 271	- chiral spirocyclic borate ligands application
metal-based selective oxidations 78	to catalytic enantioselective 303–305
- alkenes oxidation 89–92	- oxazoline-containing ligands application in
- bromination reactions 78–85	catalytic enantioselective 286–299
 nitrogen-containing substrates oxidation 	 Salen-derived ligands application in enantioselective 283–286
85	
 sulfur-containing substrates oxidation 	- tethered bis(8-quinolinato) chromium
85–89	complexes application in catalytic enantioselective 299–303
metal catalysis 78, 83	enantioselective 255–303
metal-catalyzed reactions 338	
- CU-catalyzed reactions 343–345	o
- miscellaneous 345–347	olefins, Ir-catalyzed hydrogenation of
- Mizoroki-Heck reaction 340–341	minimally functionalized 153–155, 162,
	319
9	 phosphite-nitrogen ligand application
•	155–161
metal TRA complayer 84	one-pot Wittig reaction 331
metal-TPA complexes 84	organocatalytic methods 333
methyl Z-2-acetamidocinnamate (MAC)	- asymmetric aldol reactions 333–334
adducts	 cycloaddition and related reactions
– evolution and enantioselection origin	335–338
124–126	organocuprates 233
- formation 121–123	- accepted mechanistic proposals 233–234
Mizoroki–Heck reaction 340–341	- kinetic and NMR studies 235–242
molecular orbitals (MOs) 172, 173, 177, 187	challenges 245
monodentate phosphorus ligands, in	computational studies 242–243
asymmetric hydrogenation 108–112	– – nonlinear effects 243–245

 privileged copper(I) catalysis selective applications allylic halides additions 250-252 conjugate addition 245-250 	q quantum mechanical methods 167–170, 175
oxazoline-alcohol ligands, one-step synthesis	r
of 320-321	reaction energies 175–177
oxazoline-containing ligands application, in catalytic enantioselective	rhodium-catalyzed C–N bond formation 265–273
Nozaki-Hiyama-Kishi reaction 286-299	R-X=alkenyl bromides
oxidation catalysts, <i>see</i> polyoxometalates (POMs)	arenes, direct alkenylation of 216heteroarenes, direct alkenylation of
oxidative enzymes classification 93	215–216
OXONE [®] 29, 34, 35, 41, 42	$R-X=BrCH_2Ar$
oxygenases 92	– arenes, direct benzylation of 216
oxygen donor (OD) 77, 78	R-X=(hetero)aryl halides
	arenes, direct (hetero)arylation of 215heteroarenes, direct (hetero)arylation of 212–215
p	
palladium-catalyzed allylic sulfinylation	s
67, 68, 69	Salen-derived ligands application, in
paramagnetic term 113	enantioselective Nozaki-Hiyama-Kishi
peptides, solvent-free synthesis of 332	reaction 283–286
peroxidases 93	salicylic acid 37
PhIO 42	Schrödinger equation 167–168, 169
phosphite–nitrogen ligands, application of 155–161	σ -donation 187 Slater type orbitals (STO) 172
polarization 173	solid-state reactions 335, 336, 347
polyanions 3–4, 5, 10, 13, 14,	solvation 174
polyoxometalates (POMs) 3	Sonogashira reaction 341–343
- homogeneous oxidations with 6-8	spirocyclic borate ligands application, to
 – aerobic oxidations with polyoxopalladates 	catalytic enantioselective
16–17	Nozaki-Hiyama-Kishi reaction 303–305
Hf/Zr peroxopolyoxometalates 13–16	split-valence (SV) basis set 173
– – with hydrogen peroxide by	Streptococcus lactis 131
peroxopolyoxotungstates-dendrimers	Streptomyces niveus 131
8–10	Streptomyces spheroides 131
with hydrogen peroxide with vacant and	sulfenate anions
hybrid POMs 10–12	- decomposition 63
 – TMSPs as oxygen-evolving catalysts 	- first isolation of 64
17–19 – – with TMS-POMs 12–13	- formation from sulfenate silyl esters 64
- soluble metal oxides 3-6	- generation of transient 65–73
polyoxopalladates, aerobic oxidations with	- strategies towards generation of 64
16–17	- via addition-elimination 65
Pople sets 173	– via alkaline heterocyclic disulfides hydrolysis
potential energy surfaces 168, 175, 189, 190	64 sulfenic acids 47–48
pseudodomino sulfenate generation/arylation	
process mechanism 72	 in alliin analogs synthesis 60 α-D-glucopyranosyl 55
pseudodomino sulfinylation/Mizoroki–Heck	– β-p-glucopyranosyl 55
process postulated mechanism 71	- cation 50
pseudo-thiodisaccharides, via a glucosulfenic	- cephalosporin-derived 52
acid 60	– chiral 59

sulfenic acids (contd.) - formation by thionitrate function hydrolysis

- generation of transient 52-57, 56, 57, 58

- precursors from

1,1-bis(phenylsulfonyl)ethylene

- reactivity, in sulfoxides and unsymmetrical disulfides preparation 57-62

 stable sulfenate anions synthesis 62-65

 synthesis of stable 48 - 52

– thiophene triptycene 50

- transient sulfenate anion generation leading to sulfoxides 65 - 73

sulfoxidation 86, 87, 88, 89, 95

- biocatalytic 95-96

sulfoxides

- transient sulfenate anion generation leading to 65-73

- and unsymmetrical disulfides preparation, sulfenic acid reactivity in 57-62 sustainable catalytic oxidations, with peroxides 77 - 78

 biocatalytic oxidations with hydrogen peroxide

98-99 – biocatalytic alcohols oxidation

- - biocatalytic alkenes epoxidation 96 - 98

– biocatalytic sulfoxidation 95–96

 – enzymes and HOOH 92-94

metal-based selective oxidations 78

- - alkenes oxidation 89-92

– bromination reactions 78–85

– nitrogen-containing substrates oxidation

– sulfur-containing substrates oxidation 85-89

Suzuki-Miyaura reaction 338-340 t

Tanaka reaction proposed mechanism tethered bis(8-quinolinato) chromium complexes application, in catalytic enantioselective Nozaki-Hiyama-Kishi reaction 299-303 thioallenes cyclization 206 thioglycoconjugates, from bis-sulfenic acids

transition metal 257

catalysis 309, 313, 322

- complexes 183-187

transition metals substituted polyoxometalates (TMSPs)

 as oxygen-evolving catalysts triazine-derived sulfenic acid triphenolamines (TPA) ligands 83, 84, 85, 86 - 87tripodal disulfides synthesis

unsaturated mechanism 106-107

valence double-ζ 173 vanadium-dependent bromoperoxidase (V-BrPO) enzymes 78-79

wave function theory (WFT) 167, 168-169 Wittig reaction, one pot